

Unit 8 Electromagnetic design Episode I

Soren Prestemon and **Steve Gourlay**

Lawrence Berkeley National Laboratory (LBNL)

With significant re-use of material from the same unit lecture by Ezio Todesco, USPAS 2017

CONTENTS

1. How to generate a perfect field

- Dipoles: $\cos\theta$, intersecting ellipses, pseudo-solenoid
- Quadrupoles: $\cos 2\theta$, intersecting ellipses

2. How to build a good field with a sector coil

- Dipoles
- Quadrupoles

Biot-Savart tells us how to make field with currents

$$B(r) = \frac{\mu_0}{4\pi} \int_C \frac{Idl \times r'}{|r'|^3} = \frac{\mu_0}{4\pi} \int_C \frac{Idl \times \hat{r}'}{|r'|^2}$$

How can we make the maximum field from this line current?

The simplest case for dipoles- current sheets

• Perfect dipoles - 1

 Wall-dipole: a uniform current density in two walls of infinite height produces a pure dipolar field

- + + - - +

A wall-dipole, artist view

A wall-dipole, cross-section

A practical winding with flat cables

- + mechanical structure and winding look easy
- the coil is infinite
- truncation gives reasonable field quality only for rather large height the aperture radius (very large coil, not effective)

A (slightly) more practical approach

• Perfect dipoles - 2

<u>Intersecting ellipses</u>: a uniform current density in the area of two intersecting ellipses produces a pure dipolar field

Intersecting ellipses

- the aperture is not circular

A practical (?) winding with flat cables

- the shape of the coil is not easy to wind with a flat cable (ends?)
- need of internal mechanical support that reduces available aperture

We have the tools to demonstrate this...

Perfect dipoles - 2

Proof that intersecting circles give perfect field

• within a cylinder carrying uniform current j_0 , the field is perpendicular to the radial direction and proportional to the distance to the centre r:

$$\nabla \times \vec{B} = \mu_0 \vec{J} \Rightarrow \oint \vec{B} \cdot dl = \mu_0 I_{enclosed}$$

Combining the effect of the two cylinders

$$B_x = \frac{\mu_0 j_0 r}{2} \left\{ -r_1 \sin \theta_1 + r_2 \sin \theta_2 \right\} = 0$$

$$B_{y} = \frac{\mu_{0} j_{0} r}{2} \left\{ -r_{1} \cos \theta_{1} + r_{2} \cos \theta_{2} \right\} = -\frac{\mu_{0} j_{0}}{2} s$$

From M. N. Wilson, pg. 28

And now to real practical configurations

Perfect dipoles - 3

• $\underline{\text{Cos}\theta}$: a current density proportional to $\cos\theta$ in an annulus - we approximate it by "sectors" with uniform current density (think a conductor carrying a constant current…)

An ideal cosθ

A practical winding with one layer and wedges
[from M. N. Wilson, pg. 33]

A practical winding with three layers and no wedges [from M. N. Wilson, pg. 33]

Artist view of a cosθ magnet [from Schmuser]

- + self supporting structure (roman arch)
- + the aperture is circular, the coil is compact
- + winding is manageable

Demonstrating that a cos-theta distribution really is "ideal"

- Perfect dipoles 3
 - Cos theta: proof we have a distribution

$$j(\theta) = j_0 \cos(m\theta)$$

The vector potential reads

$$A_z(\rho, \phi) = \frac{\mu_0 j}{2\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{\rho}{\rho_0}\right)^n \cos[n(\phi - \theta)]$$

and substituting one has

$$A_z(\rho,\phi) = \frac{\mu_0 j_0}{2\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{\rho}{\rho_0}\right)^n \int_0^{2\pi} \cos(m\theta) \cos[n(\phi-\theta)] d\theta$$

using the orthogonality of Fourier series

$$A_z(\rho, \phi) = \frac{\mu_0 j_0}{2m} \left(\frac{\rho}{\rho_0}\right)^m \cos(m\theta)$$

Multipoles can then be derived from the process used to identify dipole configurations

Perfect quadrupoles

- $Cos2\theta$: a current density proportional to $cos2\theta$ in an annulus approximated by sectors with uniform current density and wedges
- (Two) <u>intersecting ellipses</u>

Quadrupole as an ideal cos2θ

Quadrupole as two intersecting ellipses

- Perfect sextupoles: $\cos 3\theta$ or three intersecting ellipses
- Perfect 2n-poles: $\cos n\theta$ or n intersecting ellipses

Reminder on field expansion

We recall the equations relative to a current line

we expand in a Taylor series

$$B(z) = -\frac{I\mu_0}{2\pi z_0} \sum_{n=1}^{\infty} \left(\frac{z}{z_0}\right)^{n-1} = -\frac{I\mu_0}{2\pi z_0} \sum_{n=1}^{\infty} \left(\frac{R_{ref}}{z_0}\right)^{n-1} \left(\frac{x+iy}{R_{ref}}\right)^{n-1}$$

the multipolar expansion is defined as

$$B(z) = \sum_{n=1}^{\infty} C_n \left(\frac{z}{R_{ref}} \right)^{n-1} = \sum_{n=1}^{\infty} \left(B_n + i A_n \right) \left(\frac{z}{R_{ref}} \right)^{n-1}$$

the main component is

$$B_1 = -\frac{I\mu_0}{2\pi} \operatorname{Re}\left(\frac{1}{z_0}\right) = -\frac{I\mu_0}{2\pi} \frac{\cos\theta}{|z_0|}$$

• the non-normalized multipoles are

 $B(z) = \frac{I\mu_0}{2\pi(z-z)}.$

$$C_n = -\frac{I\mu_0}{2\pi R_{ref}} \left(\frac{R_{ref}}{z_0}\right)^n$$

We can calculate the field produced by a sector dipole via integration

• We compute the central field given by a sector dipole with uniform current density *j*

$$B_1 = -\frac{I\mu_0}{2\pi} \operatorname{Re}\left(\frac{1}{z_0}\right) = -\frac{I\mu_0}{2\pi} \frac{\cos\theta}{|z_0|} \qquad I \to j\rho d\rho d\theta$$

Taking into account of current signs

$$B_1 = -2\frac{j\mu_0}{2\pi} \int_{-\alpha}^{\alpha} \int_{r}^{r+w} \frac{\cos\theta}{\rho} \rho d\rho d\theta = -\frac{2j\mu_0}{\pi} w \sin\alpha$$

This simple computation is full of consequences

- $B_1 \propto$ current density (obvious)
- $B_1 \propto \text{coil width } w \text{ (less obvious)}$
- B_1 is independent of the aperture r (much less obvious)

What differentiates the field produced by a sector dipole and a $cos(\theta)$ dipole?

• For an "ideal" $cos(\theta)$, we have

$$B_{1} = -4 \frac{j\mu_{0}}{2\pi} \int_{0}^{\pi/2} \int_{r}^{r+w} \frac{\cos^{2}\theta}{\rho} \rho d\rho d\theta = -\frac{j\mu_{0}}{2} w$$

So the "efficiency" of the basic sector magnet is

$$rac{B_{1,sector}}{B_{1,Cos(heta)}} = rac{4}{\pi} sin(heta)$$

• So we are not dealing with "efficiency" here, but rather "contamination" of the field with harmonic content

Symmetries are used to maximize efficiency and minimize harmonic content

- A dipolar symmetry is characterized by
 - Up-down symmetry (with same current sign)
 - Left-right symmetry (with opposite sign)

- Why this configuration?
 - Opposite sign in left-right is necessary to avoid that the field created by the left part is canceled by the right one
 - In this way all multipoles except B_{2n+1} are canceled

$$B(z) = B_1 + B_3 \left(\frac{z}{R_{ref}}\right)^2 + B_5 \left(\frac{z}{R_{ref}}\right)^4 + \dots \qquad B(z) = B_1 \left[1 + 10^{-4} \left(b_3 \frac{z^2}{R_{ref}^2} + b_5 \frac{z^4}{R_{ref}^4} + \dots\right)\right]$$
 these multipoles are called "allowed multipoles"

- Remember the power law decay of multipoles with order (Unit 5)
- And that field quality specifications concern only first 10-15 multipoles
 - The field quality optimization of a coil lay-out concerns only a few quantities! Usually b_3 , b_5 , b_7 , and possibly b_9 , b_{11}

A useful tool to remind yourself of allowable multipoles based on symmetries in the current distribution

Allowed harmonics (Poisson notation)

Multipole		Allowed	Corrector Colls	Remaining Harmonics				
Magnet Dipole a)	Vac. Ch Shape	Harmonics 1 2 3 4 5 rotate r(1) 6 same sign	(Approp. Located)	×	x	n' 3	4	5
b)	\Leftrightarrow	1 3 5 7 9 r(2) c	- 1 +	×,	×	5	7	9
Quad.		2 4 6 8 10 r(2) s	+ + +	x	*	6	6	10
d)	+ +	2 6 10 14 18 r (4) c	**	. x	x	10	14	18
Sext. e)	:	3 6 9 12 15 (3) s	:	x	×	9	12	15
n		3 9 15 21 27 r(6) c	+ + - + - + + -	×	×	15	21	27
g) .		1 3 5 7 9 r(2)c	- +	x	×	,5	7 TIP-4	9

The sector coil strength can be calculated for higher order sector coil designs

Multipoles of a sector coil

$$C_n = -2\frac{j\mu_0 R_{ref}^{n-1}}{2\pi} \int_{-\alpha}^{\alpha} \int_{r}^{r+w} \frac{\exp(-in\theta)}{\rho^n} \rho d\rho d\theta = -\frac{j\mu_0 R_{ref}^{n-1}}{\pi} \int_{-\alpha}^{\alpha} \exp(-in\theta) d\theta \int_{r}^{r+w} \rho^{1-n} d\rho$$

$$B_2 = -\frac{j\mu_0 R_{ref}}{\pi} \sin(2\alpha) \log\left(1 + \frac{w}{r}\right)$$

$$B_n = -\frac{j\mu_0 R_{ref}^{n-1}}{\pi} \frac{2\sin(\alpha n)}{n} \frac{(r+w)^{2-n} - r^{2-n}}{2-n}$$

- Main features of these equations
 - Multipoles n are proportional to sin (n angle of the sector)
 - They can be made equal to zero!
 - Proportional to the inverse of sector distance to power *n*
 - High order multipoles are not affected by coil parts far from the centre

Back to dipole: how to improve the field quality through judicious choice of sector angles

• First allowed multipole B_3 (sextupole)

$$B_3 = \frac{\mu_0 j R_{ref}^2}{\pi} \frac{\sin(3\alpha)}{3} \left(\frac{1}{r} - \frac{1}{r+w} \right)$$

for $\alpha = \pi/3$ (i.e. a 60° sector coil) one has $B_3 = 0$

• Second allowed multipole B_5 (decapole)

$$B_5 = \frac{\mu_0 j R_{ref}^4}{\pi} \frac{\sin(5\alpha)}{5} \left(\frac{1}{r^3} - \frac{1}{(r+w)^3} \right)$$

for $\alpha = \pi/5$ (i.e. a 36° sector coil) or for $\alpha = 2\pi/5$ (i.e. a 72° sector coil) one has $B_5 = 0$

• With one sector one cannot set to zero both multipoles ... let's try with more sectors!

Adding a second sector gives us the "knob" we need to cancel an additional multipole term... and more!

Coil with two sectors

$$B_{3} = \frac{\mu_{0} j R_{ref}^{2}}{\pi} \frac{\sin 3\alpha_{3} - \sin 3\alpha_{2} + \sin 3\alpha_{1}}{3} \left(\frac{1}{r} - \frac{1}{r + w}\right)$$

$$B_{5} = \frac{\mu_{0} j R_{ref}^{4}}{\pi} \frac{\sin 5\alpha_{3} - \sin 5\alpha_{2} + \sin 5\alpha_{1}}{5} \left(\frac{1}{r^{3}} - \frac{1}{(r+w)^{3}} \right)^{\frac{100}{100}}$$

- Note: we have to work with non-normalized multipoles, which can be added together
- Equations to set to zero B_3 and B_5

$$\begin{cases} \sin(3\alpha_3) - \sin(3\alpha_2) + \sin(3\alpha_1) = 0\\ \sin(5\alpha_3) - \sin(5\alpha_2) + \sin(5\alpha_1) = 0 \end{cases}$$

• There is a one-parameter family of solutions, for instance (48°,60°,72°) or (36°,44°,64°) are solutions

Some algebra allows the analysis of angles that can cancel B₃, B₅ and B₇

One can compute numerically the solutions of

- There is a one-parameter family
- Integer solutions
 - $[0^{\circ}-24^{\circ}, 36^{\circ}-60^{\circ}]$ it has the minimal sector width
 - [0°-36°, 44°-64°] it has the minimal wedge width
 - [0°-48°, 60°-72°]
 - [0°-52°, 72°-88°] very large sector width (not useful)
- one solution $\sim [0^{\circ}-43.2^{\circ}, 52.2^{\circ}-67.3^{\circ}]$ sets also $B_7=0$

This approach can be extended further via the addition of more wedges

- We have seen that with one wedge one can set to zero three multipoles (B_3 , B_5 and B_7)
- What about two wedges?

$$\sin(3\alpha_{5}) - \sin(3\alpha_{4}) + \sin(3\alpha_{3}) - \sin(3\alpha_{2}) + \sin(3\alpha_{1}) = 0$$

$$\sin(5\alpha_{5}) - \sin(5\alpha_{4}) + \sin(5\alpha_{3}) - \sin(5\alpha_{2}) + \sin(5\alpha_{1}) = 0$$

$$\sin(7\alpha_{5}) - \sin(7\alpha_{4}) + \sin(7\alpha_{3}) - \sin(7\alpha_{2}) + \sin(7\alpha_{1}) = 0$$

$$\sin(9\alpha_{5}) - \sin(9\alpha_{4}) + \sin(9\alpha_{3}) - \sin(9\alpha_{2}) + \sin(9\alpha_{1}) = 0$$

$$\sin(11\alpha_{5}) - \sin(11\alpha_{4}) + \sin(11\alpha_{3}) - \sin(11\alpha_{2}) + \sin(11\alpha_{1}) = 0$$

One can set to zero five multipoles (B_3 , B_5 , B_7 , B_9 and B_{11}) ~[0°-33.3°, 37.1°-53.1°, 63.4°-71.8°]

One wedge, $b_3=b_5=b_7=0$ [0°-43.2°,52.2°-67.3°]

Two wedges, b₃=b₅=b₇=b₉=b₁₁=0 [0°-33.3°,37.1°-53.1°,63.4°-71.8°]

Or we can add more layers...

- Let us see two coil lay-outs of real magnets
 - The Tevatron has two blocks on two layers with two (thin !!) layers one can set to zero B_3 and B_5
 - The RHIC dipole has four blocks

Tevatron main dipole - 1980

RHIC main dipole - 1995

Practical considerations come into play in real sector magnet layouts

- Limits due to the cable geometry
 - Finite thickness → one cannot produce sectors of arbitrary width
 - Cables cannot be key-stoned beyond a certain angle
 - some wedges can be used to better follow the arch
- One does not always aim at having zero multipoles
 - There are other contributions (iron, persistent currents ...)

A real example utilizing two layers without wedges

Case of two layers, no wedges

$$B_{3} \propto \sin(3\alpha_{1}) \left(\frac{1}{r} - \frac{1}{r+w}\right) + \sin(3\alpha_{2}) \left(\frac{1}{r+w} - \frac{1}{r+2w}\right)$$

$$B_{5} \propto \sin(5\alpha_{1}) \left(\frac{1}{r^{3}} - \frac{1}{(r+w)^{3}}\right) + \sin(5\alpha_{2}) \left(\frac{1}{(r+w)^{3}} - \frac{1}{(r+2w)^{3}}\right)$$

- There exist solutions only up to w/r < 0.5
- There are two branches that join at $w/r \sim 0.5$, in $\alpha_1 \sim 70^\circ$ and $\alpha_2 \sim 25^\circ$
- Tevatron dipole fits with these solutions

Tevatron dipole: w/r~0.20

Recap before looking at quadrupoles

• We recall the equations relative to a current line we expand in a Taylor series

$$B(z) = -\frac{I\mu_0}{2\pi z_0} \sum_{n=1}^{\infty} \left(\frac{z}{z_0}\right)^{n-1} = -\frac{I\mu_0}{2\pi z_0} \sum_{n=1}^{\infty} \left(\frac{R}{z_0}\right)^{n-1} \left(\frac{z}{R}\right)^{n-1}$$

the multipolar expansion is defined as

$$B(z) = \sum_{n=1}^{\infty} C_n \left(\frac{z}{R}\right)^{n-1} = \sum_{n=1}^{\infty} (B_n + iA_n) \left(\frac{z}{R}\right)^{n-1}$$

the main quadrupolar component is

$$B_2 = -\frac{I\mu_0 R_{ref}}{2\pi} \operatorname{Re} \left(\frac{1}{z_0^2} \right) = -\frac{I\mu_0 R_{ref}}{2\pi} \frac{\cos 2\theta}{|z_0^2|}$$

• the non-normalized multipoles are

$$B(z) = \frac{\mu_0}{2\pi (z - z_0)}.$$

$$C_n = -\frac{I\mu_0}{2\pi R_{ref}} \left(\frac{R_{ref}}{z_0}\right)^n$$

We have seen that we can integrate to find B₂ for the sector layout

• We compute the central field given by a sector quadrupole with uniform current density *j*

$$B_2 = -\frac{I\mu_0 R_{ref}}{2\pi} \operatorname{Re} \left(\frac{1}{z_0^2}\right) = -\frac{I\mu_0 R_{ref}}{2\pi} \frac{\cos 2\theta}{\left|z_0^2\right|} \quad I \longrightarrow j\rho d\rho d\theta$$

Taking into account of current signs

$$B_2 = -8 \frac{j\mu_0 R_{ref}}{2\pi} \int_0^\alpha \int_r^{r+w} \frac{\cos 2\theta}{\rho^2} \rho d\rho d\theta = -\frac{4j\mu_0 R_{ref}}{\pi} \left[\sin 2\alpha\right] \ln\left(1 + \frac{w}{r}\right)$$

- The gradient is a function of w/r
- For large *w*, the gradient increases with log *w*
- Field gradient [T/m]
- Allowed multipoles

$$G = \frac{B_2}{R_{ref}}$$

Remember: only 2n+1 are allowed by symmetry

$$B(z) = B_2 \frac{z}{R_{ref}} + B_6 \left(\frac{z}{R_{ref}}\right)^5 + B_{10} \left(\frac{z}{R_{ref}}\right)^9 + \dots \qquad B(z) = Gz \left[1 + 10^{-4} \left(b_6 \frac{z^4}{R_{ref}^4} + b_{10} \frac{z^8}{R_{ref}^8} + \dots\right)\right].$$

We once again apply the process of optimizing the sector angle to eliminate higher order terms

• First allowed multipole B_6 (dodecapole)

$$B_6 = \frac{\mu_0 j R_{ref}^5}{\pi} \frac{\sin(6\alpha)}{6} \left(\frac{1}{r^4} - \frac{1}{(r+w)^4} \right)$$

for $\alpha = \pi/6$ (i.e. a 30° sector coil) one has $B_6 = 0$

• Second allowed multipole B_{10}

$$B_{10} = \frac{\mu_0 j R_{ref}^8}{\pi} \frac{\sin(10\alpha)}{10} \left(\frac{1}{r^8} - \frac{1}{(r+w)^8} \right)$$

for $\alpha = \pi/10$ (i.e. a 18° sector coil) or for $\alpha = \pi/5$ (i.e. a 36° sector coil) one has $B_5 = 0$

• The conditions look similar to the dipole case ...

We can again use wedges to further eliminate terms, and in fact there is a direct relationship between solutions

- For a sector coil with one layer, the same results of the dipole case hold with the following transformation
 - Angles have to be divided by two
 - Multipole orders have to be multiplied by two

Examples

- One wedge coil: \sim [0°-48°, 60°-72°] sets to zero b₃ and b₅ in dipoles
- One wedge coil: \sim [0°-24°, 30°-36°] sets to zero b₆ and b₁₀ in quadrupoles
 - The LHC main quadrupole is based on this layout: one wedge between 24° and 30°, plus one on the outer layer to enable the coil keystone

LHC main quadrupole

Examples of quadrupole sector magnet layouts

Examples

- One wedge coil: \sim [0°-12°, 18°-30°] sets to zero b_6 and b_{10} in quadrupoles
 - The Tevatron main quadrupole is based on this lay-out: a 30° sector coil with one wedge between 12° and 18° (inner layer) to zero b_6 and b_{10} the outer layer can be at 30° without wedges since it does not affect much b_{10}
- One wedge coil: \sim [0°-18°, 22°-32°] sets to zero b_6 and b_{10}
 - The RHIC main quadrupole is based on this lay-out its is the solution with the smallest angular width of the wedge

RHIC main quadrupole

Summary

- We have shown how to generate a pure multipole field
 - We showed cases for the dipole and quadrupole fields
- We analyzed the constraints for having a perfect field quality in a sector coil
 - Equations for zeroing multipoles can be given
 - Layouts canceling field harmonics can be found
 - Several built dipoles and quadrupoles follow these guidelines

REFERENCES

- Field quality constraints
 - M. N. Wilson, Ch. 1
 - P. Schmuser, Ch. 4
 - A. Asner, Ch. 9
 - Classes given by A. Devred at USPAS